Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(3)2022 Jan 29.
Article in English | MEDLINE | ID: covidwho-1667193

ABSTRACT

Elastin represents the structural component of the extracellular matrix providing elastic recoil to tissues such as skin, blood vessels and lungs. Elastogenic cells secrete soluble tropoelastin monomers into the extracellular space where these monomers associate with other matrix proteins (e.g., microfibrils and glycoproteins) and are crosslinked by lysyl oxidase to form insoluble fibres. Once elastic fibres are formed, they are very stable, highly resistant to degradation and have an almost negligible turnover. However, there are circumstances, mainly related to inflammatory conditions, where increased proteolytic degradation of elastic fibres may lead to consequences of major clinical relevance. In severely affected COVID-19 patients, for instance, the massive recruitment and activation of neutrophils is responsible for the profuse release of elastases and other proteolytic enzymes which cause the irreversible degradation of elastic fibres. Within the lungs, destruction of the elastic network may lead to the permanent impairment of pulmonary function, thus suggesting that elastases can be a promising target to preserve the elastic component in COVID-19 patients. Moreover, intrinsic and extrinsic factors additionally contributing to damaging the elastic component and to increasing the spread and severity of SARS-CoV-2 infection are reviewed.


Subject(s)
COVID-19/metabolism , Elastin/physiology , Extracellular Matrix/physiology , Animals , Elastic Tissue/metabolism , Elastin/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Traps/metabolism , Fibrillins/metabolism , Humans , Lung/pathology , Microfibrils/metabolism , Microfilament Proteins/metabolism , Neutrophils , Protein-Lysine 6-Oxidase/metabolism , SARS-CoV-2/pathogenicity , Tropoelastin/metabolism
2.
Cells ; 10(7)2021 06 26.
Article in English | MEDLINE | ID: covidwho-1389304

ABSTRACT

The lungs are affected by illnesses including asthma, chronic obstructive pulmonary disease, and infections such as influenza and SARS-CoV-2. Physiologically relevant models for respiratory conditions will be essential for new drug development. The composition and structure of the lung extracellular matrix (ECM) plays a major role in the function of the lung tissue and cells. Lung-on-chip models have been developed to address some of the limitations of current two-dimensional in vitro models. In this review, we describe various ECM substitutes utilized for modeling the respiratory system. We explore the application of lung-on-chip models to the study of cigarette smoke and electronic cigarette vapor. We discuss the challenges and opportunities related to model characterization with an emphasis on in situ characterization methods, both established and emerging. We discuss how further advancements in the field, through the incorporation of interstitial cells and ECM, have the potential to provide an effective tool for interrogating lung biology and disease, especially the mechanisms that involve the interstitial elements.


Subject(s)
Lab-On-A-Chip Devices , Lung Diseases/pathology , Lung/physiology , Regeneration/physiology , Respiratory Mucosa/cytology , COVID-19/pathology , COVID-19/therapy , COVID-19/virology , Cells, Cultured , Extracellular Matrix/physiology , Humans , Lung/cytology , Lung/pathology , Lung Diseases/physiopathology , Lung Diseases/therapy , Models, Biological , Respiratory Mucosa/pathology , Respiratory Mucosa/physiology , SARS-CoV-2/pathogenicity , Tissue Culture Techniques/instrumentation , Tissue Culture Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL